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Abstract: The variational moment approach for the neutrons scattering analysis by 
60

Cu nucleus within the energy range 

(60-80) MeV is applied to the construction of the complex single-particle mean field felt by neutrons in 
60

Cu, starting from 

negative energy values to the positive energy values. The experimental data of the scattering neutron has been analysis by 

using one of the methods for optical dispersion model which depending on the afferent between the real and imaginary parts 

and this led to a derivation decrease in determining the optical parameters from the experimental data. Also on the stripe 

expending of the real potential parameters from high energy to low energy to the close area of the Coulomb barrier which 

characterized the lack of information about the experimental data for each, using the program SPI-GINOA in order to 

determine the value of the volume integral for the real and imaginary parts (surface and volume). The Value of the volume 

integral for the real part and integrals oh "Hartree – Fock" was pointed and then determined the value of real part of the 

potential Hartree – fock potential. In addition we also has been determined the imaginary potential (two parts the surface and 

the volume) and studied on function of energy for all the specific pointed ingredients. The potential dispersion was determined 

(surface – volume) and studied their functional energy. Therefore, we determined the radius neutron optical model and also we 

found its energy way match close to what reveal the correctness of method of dispersive optical model at one hand, and the 

accuracy in the determination of optical model parameters at other hand. 

Keywords: Variational Moment Approach (VMA), Dispersion Relations (DR), Total Cross Section, Neutrons Scattering, 

Optical Neutron Potential, Mean Field, Fermi Energy 

 

1. Introduction 

The nuclear optical model potential is of the fundamental 

importance concepts in the nuclear physics. It describes the 

motion of one nucleon, bound or unbound, in the mean field 

of all the other nucleons comprising the nucleus. The field 

due to the sum of all the individual nucleon-nucleon 

interactions is thus represented by a simple one-body 

potential. This approximation greatly simplifies the 

calculation of a wide range of nuclear structure and nuclear 

reaction phenomena, in addition to the excellent agreement 

with experimental data [1]. The application of the concept of 

the nuclear mean field is for understanding the properties of 

bound single-particle states and for elastic scattering of 

unbound nucleons [1-3]. 

The phenomenological optical model potential for 

nucleon-nucleus scattering, �, is defined as [2-8]: 

���, �� � �	
��, �� � 	����, ��. ��. �� � 	���, �� � 	���� �
 � ���
��, �� � ����, �� � �����, ��. ��. ���     (1) 

Where 	
,�  and �
,�,��  are the real and imaginary 

components of the volume-central �	� , surface-central ��� 

and spin-orbit ����  potentials, respectively. �  is the LAB 

energy of the incident particle in ��	. All components are 

separated in energy-dependent well depths, 

	
 , 	� , 	�� , �
 , ��  and ��� , and energy-independent radial 

parts �, namely 
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The form factor ���, 34 , 54� is a Wood-Saxon shape 

���, 34 , 54� = 6

[689�*:;<=< �]
                        (3) 

Where the geometry parameters are the radius 34 = �4?2
@,, 

with ?  the atomic mass number, and the diffuseness 

parameters 54 , � = 	, ��, �. For neutrons scattering, the value 

of the coulomb term 	� , is zero. 

By solving the SchroB dinger equation numerically with this 

complex potential yields a wealth of valuable information; it 

returns a prediction for the basic observables, namely the 

elastic angular distribution and the reaction and total cross 

section [4-8]. 

The present paper aims at presenting the variational 

moment approach (VMA) of the neutrons scattering by Cu EF  

nucleus and comparing the results with these resulting from 

global parametrization of the optical model potential and 

available experimental data within energy range (60-80) 

MeV and its extend to the reliable low and high energy 

domain from the studied energy range according to evaluated 

fitting methodology. 

2. Methodology 

The methodology of (VMA) is summarized as follows [2-4, 

7-10]: 

2.1. Volume Integral Per Nucleon 

Determining the continuous energy variation of the 

volume integral per nucleon by using Brown-Rho (Br) 

expression: 

For the central imaginary part of the nuclear mean field: 

[�G]&��� = H �!(!I�1
�!(!I�18JK1                       (4) 

The imaginary part has a volume and a surface component, 

the volume component is, 

[�G]&���� = H �!(!I�1
�!(!I�18JK�1                   (5) 

So, the surface component is, 

[�G]&'��� = [�G]&��� − [�G]&����             (6) 

where H, L& , L&� denote Brown-Rho parameters, �F is: 

�F = !M
G                                           (7) 

Where, �N , the Fermi energy in MeV, that is defined as the 

energy halfway between the last occupied and the first 

unoccupied shell of the nucleus, determined from the 

experimental masses as follows[13]: 

!M"OMPPOM:
1

!MP"QRP2(QR(S
!M:"QR(QR:2(S

                              (8) 

Where �N8  is the negative of the separation energy of a 

nucleon from the (A+1)-nucleon system. Also, �N(  is the 

negative of the separation energy of a nucleon from the A-

nucleon system, T is the atomic mass of the incident particle. 

2.2. Depths of the Volume and Surface Absorption of the 

Mean Field 

Determining the continuous energy variation of the 

volume and surface absorption depths, 

WV�E� = [�G]&���� gYZ⁄ , MeV                       (9) 

W_�E� = [�G]&'��� gY_⁄ , MeV                  (10) 

Where gYZ, gY` can be written as follows: 

abZ = )c
d  $ef@

gh∗gj
 k1 + mc%ef

$ef
nG o                   (11) 

ab_ = 6E c $e'1 %e'
gh∗gj

 k1 + 6
d mc%e'

$e'
nG o                (12) 

Where 3bp = �bp?q
2
@ , 5bZ , 3b� = �b�?q

2
@ , 5b�  are the 

radius and diffuseness parameters of the volume and surface 

absorption. 

2.3. Volume Integral Per Nucleon of Dispersive Corrections 

of the Real Part of the Mean Field 

The dispersion relations are a natural result of the causality 

principle that a scattered wave cannot be emitted before the 

arrival of the incident wave. The dispersion component stems 

directly from the absorptive part of the potential, 

∆s��, �� = t
c u v� ,!w�

!x(! ��′8z
(z                 (13) 

Where t denotes the principal value. The total real central 

potential can be written as the sum of a Hatree-Fock term 

s{N��, �� and the total dispersion potential ∆s��, �� 

s��, �� = s{N��, �� + ∆s��, ��                (14) 

Since v��, �� has a volume and a surface component, the 

dispersive addition is, 

∆s� ,!�"∆s�� ,!�8∆s'� ,!� 
 "∆
��!�#� ,$�,%��()%'∆
'�!� '

'* #� ,$',%'�              (15) 

Where the volume dispersion term is given by 

∆	
��� = t
c u &��!w�

!x(! ��′8z
(z                   (16) 

And the surface dispersion term is given by 
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∆	|��� � t

c
u

&}�!w�
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(z                    (17) 

In general, “(16)” & “(17)” cannot be solved analytically. 

However, under certain plausible conditions, analytical 

solutions exist. Under the assumption that the imaginary 

potential is symmetric with respect to the Fermi energy �N  

���N � �� � ���N � ��                 (18) 

Where � denotes either the volume or surface term, we 

can rewrite the dispersion relation as, 

∆	��� � G

c
�� � �N�t u

&�!x�

�!x(!M�1(�!(!M�1 ��wz
!M

    (19) 

Determining the continuous energy variation of the volume 

integral per nucleon of dispersive corrections of the real part of 

the mean field is obtained by using the dispersion relations: 

The total dispersive correction: 

[�G]∆
K
��� � G

c
�� � �N� u

[ 1]K�!x�

�!x(!M�1(�!(!M�1 ��wz
!I

  (20) 

The volume dispersive correction: 

[�G]∆
K�
��� � G

c
�� � �N� u

[ 1]K��!x�

�!x(!M�1(�!(!M�1 ��wz
!I

 (21) 

So, the surface dispersive correction is: 

[�G]∆
K'
��� � [�G]∆
K

��� � [�G]∆
K�
���       (22) 

2.4. Depths of the Dispersive Corrections of the Real 

Optical Potential 

Determining the continuous energy variation of the depths 

of the dispersive corrections of the real optical potential: 

The volume dispersive correction: 

∆VV�E� � [�G]∆
K�
��� gYZ⁄ , MeV            (23) 

The surface dispersive correction: 

∆V_�E� = [�G]∆
K'��� gY_⁄ , MeV            (24) 

So, the total dispersion potential ∆s��, �� calculated from 

“(15)”, at � = 0. 

2.5. Depth of the Total Real Central Potential 

Determining the continuous energy variation of the depth 

of the total real central potential: 
We determine the depth from “(14)”, at � = 0, 

Assumption that the Hatree-Fock term has a Wood-Saxon 

radial shape with energy-independent geometrical parameters 

��{N , 5{N� is given by 

s{N��, �� = s{N������, 3{N , 5{N�            (25) 

Where the depth s{N���  is given by the following 

parametrization: 

s�M�!�"s�M���� �� �����:���  s�������  �  ����
s�M�!�"s�M���� 8 �����(��� ����

            (26) 

Where α�� , the slope parameter, 3�� = �{N?6 d⁄ , radius 

parameter, s{N�E�� is the depth at Fermi energy. 

2.6. Volume Integral per Nucleon of the Real Potential 

Determining the continuous energy variation of the 

volume integral per nucleon of the real potential: 

The volume integral per nucleon of the real potential is 

given by: 

[�G]
��� = [�G]{N��� + [�G]∆
K���             (27) 

Where [�G]{N���, the volume integral per nucleon of the 

Hartree-Fock that can be written as follows, 

[�G]���E� = s{N��� ∗ a{N                    (28) 

Where a{N, is given by 

a{N = )c
d  $�M@

gh∗gj
 k1 + mc%��

$��
nG o                 (29) 

2.7. Radius Parameter of the Total Real Central Potential 

Determining the continuous energy variation of the radius 

parameter of the Woods-Saxon approximation to the full 

potential. 

We determine the radius parameter of the Woods-Saxon 

approximation to the full optical potential from the equation: 

3
���d + ��5
�G3
��� − m d
)cn a
���?q?� = 0 (30) 

Where 5
 , diffuseness parameter and a
��� , can be 

determined from the relation: 

a
��� = [�G]
��� s���⁄                  (31) 

So, the radius parameter will be: 

rV�E� = RV�E� A(6 d⁄                    (32) 

2.8. Comparing with the Global Parameterizations of the 

Optical Model Potential 

After calculating the volume integral per nucleon of the 

mean field components, we have compared them with 

global parameterizations of the optical potential, in addition 

to calculating the depths and the geometrical parameters 

whose calculations have been performed in the (VMA) 

program: 

1. Koning and Delaroche (Kd) [2], for 

0.001 ≤ E ≤ 200 Mev, Z� = �12 − 83�, A� = �24 − 209� 

2. Madland (Md) [11, 15], for 

50 ≤ E ≤ 400 Mev, Z� = �6 − 82�, A� = �12 − 208� 

3. Results and Discussion 

The results According to the (VMA) and (SPI-GENOA) 

programs are summarized as follows: 
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3.1. Input Parameters 

The values of the input parameters in the VMA program 

for the neutrons scattering by Cu 
EF  nucleus are showed in the 

(Table 1). 

Table 1. The values of the input parameters. 

Brown-Rho Parameters 

ρY, MeV ρ ¡
, MeV β, MeV. fmd E¥ �MeV� 

11.0 58.0 93.0 -10.8848128 

Geometrical Parameters 

aV, fm rYZ, fm r_, fm aYZ, fm a_, fm 

0.664 1.261 1.261 0.602 0.602 

Hartree-Fock Parameters 

r��, fm a��, fm α�� s��
�E��, MeV 

1.236 0.62 0.448 492.59 

(Spin- Orbit) term Parameters 

V§¨, fm W§¨, fm r§¨, fm a§¨, fm 

6.8 0.0 1.2 0.6 

(Projectile-Target) Parameters 

Z© A© �amu�714> Z� A� �amu� [14] 

0.0 1.0086 29 59.594 

3.2. Volume Integrals per Nucleon of the Imaginary Parts 

of the Mean Field 

The energy dependence of the volume integrals per 

nucleon of the imaginary parts of the mean fields are 

compared with these resulted from global parameterizations 

of the optical potential and with these resulting from the 

single fits of the potential parameters of the experimental 

data according to SPI program, within the energy range 

��# � 120�MeV, as they are showed in the Figure 1. From 

the figure it becomes clear for us: The energy dependence of 

the volume integrals per nucleon showed agreement in the 

behavior comparing with these resulted from global 

parameterization of the optical model potential, and fitting of 

these resulted from the single fits of the available 

experimental data. 

 

Figure 1. Volume integrals per nucleon of the imaginary parts of the mean 

field as a function of neutron energy (the red line) compared with these 

resulted from global parameterization of the optical model potential and 

with these resulted from the single fits of the potential parameters of the 

experimental data. 

3.3. Depths of the Imaginary Parts of the Mean Field 

The energy dependence of the depths of the (volume and 

surface) imaginary parts of the mean field within the energy 

range (from -100 to +100) MeV are showed in the Figure 2. 

From the figure we have observed a rapid variation of the 

depths in the vicinity of the Fermi energy and slowly 

variation toward the highly energies which are ascribed to a 

strong coupling between the elastic channel and the other 

reaction channels. 

 

Figure 2. Depths of the (volume and surface) imaginary parts of the mean 

field as a function of neutron energy. 

3.4. Volume Integral Per Nucleon of Total Dispersive 

Correction of the Real Part of the Mean Field 

The energy dependence of the volume integral per nucleon 

of total dispersive correction of the real part of the mean field 

within the energy range from (-100 to +100) MeV is showed 

in the Figure 3. 

 

Figure 3. Volume integral per nucleon of total dispersive correction of the 

real part of the mean field as a function of neutron energy. 

3.5. Volume Integral Per Nucleon of the Real Part of the 

Mean Field 

The energy dependence of the volume integral per 

nucleon of the real part of the mean field obtained using 

dispersion relations with its HF approximation of the 

nonlocal potential for bound and unbound energies are 

compared with these resulted from global parameterizations 

of the optical potential and with these resulted from the 

single fits of the potential parameters of the experimental 

data [16] according to SPI program. as they are showed in 

the Figure 4. 
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Figure 4. Volume integral per nucleon of the real part of the mean field as a 

function of neutron energy compared with these resulted from global 

parameterization of the optical model potential and with these resulted from 

the single fits of the potential parameters of the experimental data. 

3.6. Depth of the Total Real Central Potential 

The energy dependence of the depth of the total real 

central potential obtained by adding dispersion correction 

with its HF approximation of the nonlocal potential for 

bound and unbound energies are showed in the Figure 5. 

From the figure it becomes clear for us: The energy 

dependence behavior of both two potentials are the linear 

behavior according to the two following equations: 

�
��� �  �0.3233 E � 54.024                 (33) 

�{N��� � �0.3914 E � 53.496                 (34) 

 

Figure 5. The energy dependence of the depth of the Wood-Saxon 

approximation to the mean field potential with its HF approximation. 

3.7. The Real Radius Parameter of the Mean Field 

The energy dependence of the real radius parameter of the 

Wood-Saxon approximation to the mean field potential within 

the energy range from -80 MeV to 110 MeV is showed in the 

Figure 6. From the figure we have observed a rapid variation of 

the real radius parameter (a characteristic wiggle) in the vicinity 

of the Fermi energy and then slow variation toward the high 

energies. This wiggle is thus due to a strong coupling between 

the elastic channel and the other reaction channels. 

 

Figure 6. The energy dependence of the radius parameter of the Wood-

Saxon approximation to the mean field potential with its HF approximation. 

3.8. Cross Sections 

The total cross section within the energy range �5 �
153� MeV  is compared with these resulted from global 

parameterizations of the optical potential and with available 

experimental data [17, 18], and are (mb), as they are showed 

in the Figure 7. There is excellent agreement with the 

experimental data and the global parameterization of the 

optical potential according to our calculations in the (SPI-

GENOA) program. 

 

Figure 7. The energy dependence of the total cross section (the red line) 

compared with experimental value and with these resulted from global 

parameterization of the optical model potential. 

4. Conclusion 

The important conclusions can be shown as follows: 

i. Our analysis of the neutrons scattering by Cu 
EF  nucleus 

according to the variational moment approach drawn 

for certain input values of the mean field parameters. 

ii. Our calculation of the continuous energy variations of 

the volume integrals per nucleon of the imaginary parts 

of the mean fields showed an excellent agreement with 

these resulted from global parameterizations of the 

optical potential and with these resulted from the single 

fits of the potential parameters of the experimental total 

cross sections data. 

iii. Our calculation of the continuous energy variation of 

the depths of the (volume and surface) imaginary parts 

of the mean field for bound and unbound energies 

showed excellent agreement in the behavior 

(symmetric) in the vicinity of the Fermi energy. 

iv. Our calculation of the continuous energy variation of 

the volume integral per nucleon of the real part of the 

mean field obtained by adding dispersion correction 

with its HF approximation of the nonlocal potential for 

bound and unbound energies showed an excellent 

agreement with these resulted from global 

parameterizations of the optical potential and with 

these resulted from the single fits of the potential 

parameters of the experimental total cross sections data. 

v. Our calculation of the continuous energy variation of 

the depth of the real part of the mean field obtained by 

adding dispersion correction with its HF approximation 

of the nonlocal potential for bound and unbound 

energies showed the energy dependence behavior of 

both two potentials are the linear behavior according to 
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the two equations (33-34). In addition to continuous 

energy variation of the real radius parameter of the 

Wood-Saxon approximation to the mean field potential 

is a characteristic wiggle in the vicinity of the Fermi 

energy. This wiggle is thus due to a strong coupling 

between the elastic channel and the other reaction 

channels. 

vi. Our prediction of the total cross section data within the 

energy range �5 � 153� MeV  showed excellent 

agreement with available experimental data. 
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